Search results for "Subset and superset"

showing 1 items of 1 documents

Computing Euclidean Steiner trees over segments

2020

In the classical Euclidean Steiner minimum tree (SMT) problem, we are given a set of points in the Euclidean plane and we are supposed to find the minimum length tree that connects all these points, allowing the addition of arbitrary additional points. We investigate the variant of the problem where the input is a set of line segments. We allow these segments to have length 0, i.e., they are points and hence we generalize the classical problem. Furthermore, they are allowed to intersect such that we can model polygonal input. As in the GeoSteiner approach of Juhl et al. (Math Program Comput 10(2):487–532, 2018) for the classical case, we use a two-phase approach where we construct a superse…

Control and OptimizationSelection (relational algebra)0211 other engineering and technologies02 engineering and technologySubset and supersetManagement Science and Operations ResearchSteiner tree problemComputational geometrySet (abstract data type)symbols.namesakeLine segment510 MathematicsEuclidean geometry021108 energyMathematicsDiscrete mathematicsT57-57.97021103 operations researchApplied mathematics. Quantitative methods510 MathematikQA75.5-76.95004 InformatikTree (graph theory)Computational MathematicsExact algorithmModeling and SimulationElectronic computers. Computer sciencesymbols004 Data processing
researchProduct